Established BPD Ventilation Strategy

Amy Holden RRT, B.Sc

Severe Bronchopulmonary Dysplasia

- Heterogenous disease process with variations in airway resistance and lung compliance in different regions of the lung (fast and slow compartments)
- Characterized by gas trapping, lung overinflation, V/Q mismatch
- Results in high oxygen demand, respiratory discomfort, increased work of breathing, and frequent hypoxemic episodes

Goals of BPD ventilation strategy

- Longer inspiratory times to overcome increased airway resistance and deliver adequate tidal volumes to achieve optimal V/Q matching
- Lower respiratory rates to increase expiratory time, facilitate complete exhalation, and reduce gas trapping
- Higher tidal volumes are required to maintain adequate minute ventilation typically a minimum of 250 ml/min/kg

Inclusion Criteria

- Infants > 28 days of age AND ≥ 34 weeks PMA requiring supplemental oxygen and mechanical ventilation secondary to lung disease of prematurity
- Infants > 28 days of age AND ≥ 32 weeks PMA may be considered in the context of severe heterogeneous lung disease of prematurity AND the infant is no longer tolerating optimized high-frequency ventilation strategies (HFJV, HFOV).

Important Note

The most appropriate PMA for transitioning from a small VT/high-rate strategy aimed at preventing BPD to a large VT/low-rate strategy aimed at managing established BPD/heterogeneous CLD has not been determined. The transition phase may be identified when the small VT/high-rate strategy is no longer effective. The decision to switch strategies at < 32 weeks should be made after careful consideration and a team discussion of benefits versus risks.

Exclusion Criteria

- Term infants
- Preterm infants less than 28 days of age
- Homogeneous lung disease on chest x-ray

Relative Exclusion Criteria

Large ETT leaks – consider ETT upsize or switch to microcuff ETT

Initial Settings

For the most accurate evaluation, it is advisable to change modes while the patient is in a calm state

Mode: SIMV +VG MV: approx 250 ml/min/kg

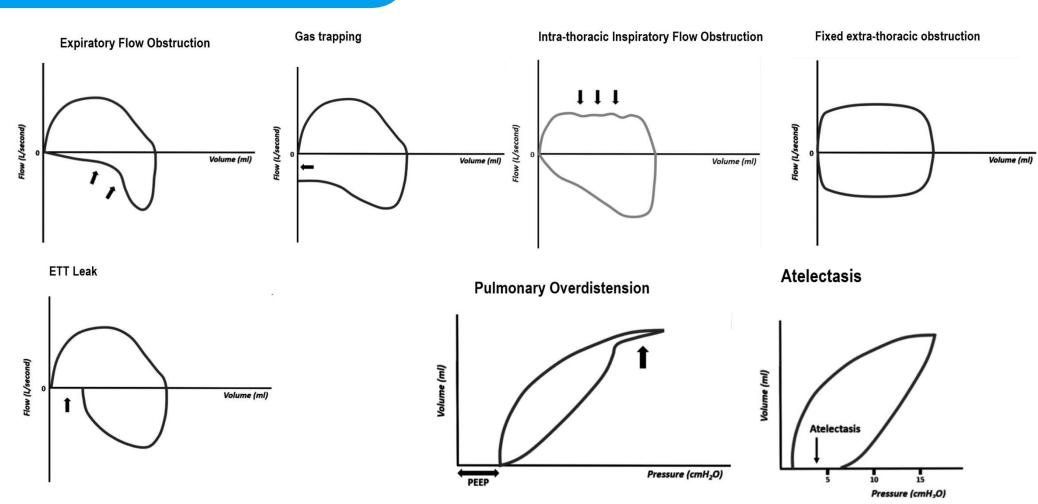
RR: 10-20 bpm To reduce risk of gas trapping...

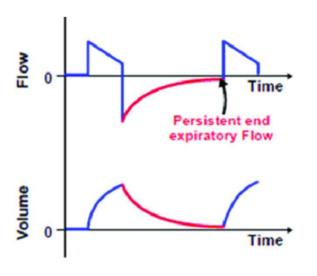
VG: 8-12 ml/kg If RR 10 bpm, VG 10-12 ml/kg

If RR 20 bpm, VG 8-9 ml/kg

PEEP: set to target MAP equal to HFV MAP, titrate according to FiO2 and FV loops If RR 15 bpm, VG 9-10 ml/kg

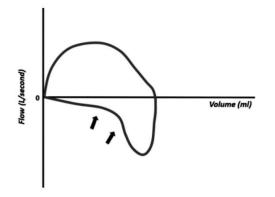
Ti: 0.6-1.0 sec, adjust according to flow-time scalar to optimize patient-ventilator synchrony

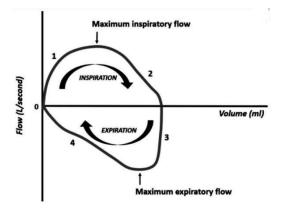

Slope: 1/3rd of Ti (i.e. for Ti 0.6 sec, slope should be set at 0.2 sec)


PS: 10-12 cmH2O, adjust according to work of breathing to overcome airway resistance

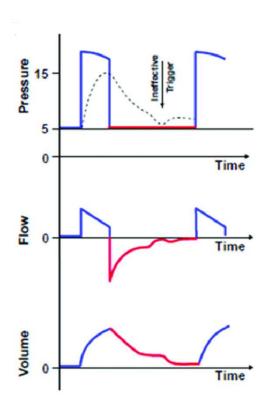
FiO2: to achieve SpO2 target

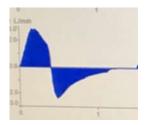
Assessment	Action
Ensure the patient is in a calm state	Use comfort care measures and avoid handling to achieve a calm state. Do not increase sedation.
Evaluate PV and FV loops to determine a baseline	Consider taking a photo of the loops if hospital policy allows. At SickKids, Rover app can be used to capture and upload photo into EPIC as pre-assessment loops.*
Observe baseline RR at rest	If resting RR is > 35 bpm, gradually increase VG until resting RR is less than 35 bpm over 5-15 min, up to a maximum VG of 12 ml/kg.
Evaluate flow scaler to ensure a brief expiratory pause before the next breath.	If no expiratory pause, gradually increase VT until an expiratory pause is achieved, up to a maximum of 12 ml/kg.
Evaluate FV loops for expiratory flow obstruction.	If expiratory flow obstruction is present, gradually increase PEEP by 1-2 and reassess.

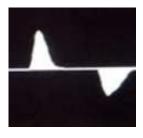

What are we looking for?

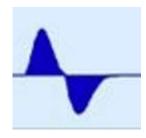


Assessment	Action
Ensure the patient is in a calm state	Use comfort care measures and avoid handling to achieve a calm state. Do not increase sedation.
Evaluate PV and FV loops to determine a baseline	Consider taking a photo of the loops if hospital policy allows. At SickKids, Rover app can be used to capture and upload photo into EPIC as pre-assessment loops.
Observe baseline RR at rest	If resting RR is > 35 bpm, gradually increase VG until resting RR is less than 35 bpm over 5-15 min, up to a maximum VG of 12 ml/kg.*
Evaluate flow scaler to ensure a brief expiratory pause before the next breath.	If no expiratory pause, a sign of gas trapping, gradually increase VT until an expiratory pause is achieved, up to a maximum of 12 ml/kg. *
Evaluate FV loops for expiratory flow obstruction.	If expiratory flow obstruction is present, gradually increase PEEP by 1-2 and reassess.


Expiratory Flow Obstruction


Normal Flow Volume Loop




Assessment	Action
Ensure the patient is in a calm state	Use comfort care measures and avoid handling to achieve a calm state. Do not increase sedation.
Evaluate PV and FV loops to determine a baseline	Consider taking a photo of the loops if hospital policy allows. At SickKids, Rover app can be used to capture and upload photo into EPIC as pre-assessment loops.
Observe baseline RR at rest	If resting RR is > 35 bpm, gradually increase VG until resting RR is less than 35 bpm over 5-15 min, up toa maximum VG of 12 ml/kg.
Evaluate flow scaler to ensure a brief expiratory pause before the next breath.	If no expiratory pause, gradually increase VT until an expiratory pause is achieved, up to a maximum of 12 ml/kg.
Evaluate FV loops for expiratory flow obstruction.	If expiratory flow obstruction is present, gradually increase PEEP by 1-2 and reassess.

Assessment	Action
Look for patient inspiratory efforts not resulting in a ventilator-supported breath	If patient unable to trigger, decrease the flow trigger (0.2-0.3 lpm on VN500, 0.1-0.3 lpm on Servo). The inability to trigger could be due to: 1) autoPEEP - gradually increase PEEP until all efforts result in a patient breath 2) Excessive hyperinflation (inspect PV loops & consider CXR to inspect hemi-diaphragms and heart size) — monitor SpO2 and gradually wean PEEP by 1 or 2 cmH2O and look for improvement in patient-triggering *
Examine flow scalars for adequacy of I-time	If there is no inspiratory pause, no significant ETT leak, and end-inspiratory flow is still positive, increase I-time by 0.05-0.1 sec and reassess. If inspiratory pause seen, decrease I-time by 0.05-0.1 sec and reassess.
Assessment complete	Use Rover app to capture and upload photo into EPIC as post-assessment loops.

Assessment	Action
Look for patient inspiratory efforts not resulting in a ventilator-supported breath	If patient unable to trigger, decrease the flow trigger (0.2-0.3 lpm on VN500, 0.1-0.3 lpm on Servo). The inability to trigger could be due to: 1) autoPEEP - gradually increase PEEP until all efforts result in a patient breath 2) Excessive hyperinflation (inspect PV loops & consider CXR to inspect hemi-diaphragms and heart size) – monitor SpO2 and gradually wean PEEP by 1 or 2 cmH2O and look for improvement in patient-triggering
Examine flow scalars for adequacy of I-time	If there is no inspiratory pause, no significant ETT leak, and end-inspiratory flow is still positive*, increase I-time by 0.05-0.1 sec and reassess. If inspiratory pause seen*, decrease I-time by 0.05-0.1 sec and reassess.*
Assessment complete	Use Rover app to capture and upload photo into EPIC as post-assessment loops.

Patient History

Male infant, GA: 25 weeks BW: 670 g

Emergency c-section due to antepartum hemorrhage

Antenatal steroids not given

Apgars 4, 6, 8

Intubated at 5 min, Curosurf x1, iNO x 14 hours, HFJV

Early chronic changes noted on CXR

DART at 27 weeks PMA with poor response

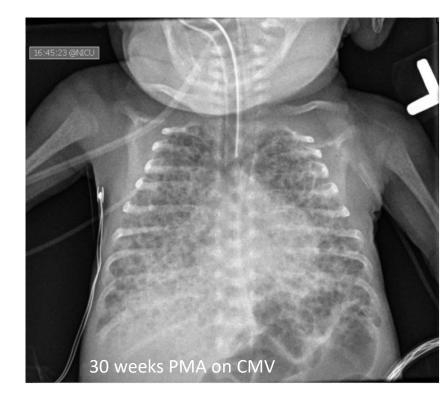
DART D/C'd early due to increasing abdo distention

HFJV RR 240 bpm, PIP 43, PEEP 12, Ti 0.022 s, FiO2 0.7-1.0

Transferred to SickKids at 28 weeks + 2 days PMA for segmental volvulus with necrosis, 30 cm distal ileum resected

Respiratory Course at SickKids

Managed on HFOV during bedside OR, then transitioned to HFJV for FiO2 0.8-1.0 and cystic changes on CXR


28 – 29 weeks PMA remained on HFJV, baseline FiO2 0.4-0.65

29 weeks + 5 days PMA – UPE, ETT up-sized from #2.5 to #3.0, had brief period of reduced FiO2 needs but then needed 0.6-0.8

30 weeks + 1 day – trials of HFOV and CMV with no clinical improvement and worsening of CXR *

30 weeks + 2 days - back to HFJV, baseline FiO2 0.45-0.65

30 weeks + 4 days $- 2^{nd}$ course of DART, stopped after 4 days due to no improvement

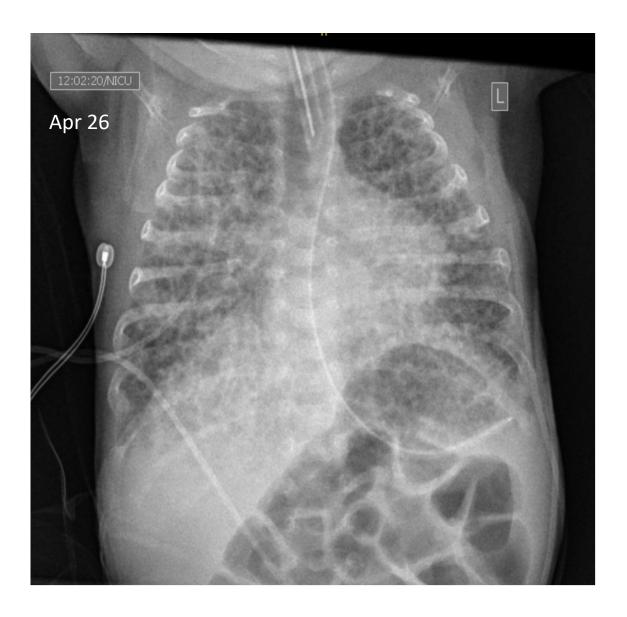
Respiratory Course at SickKids

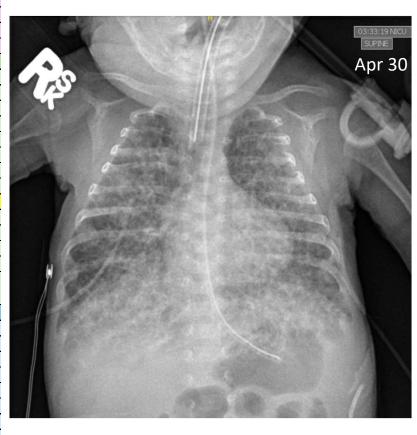
Patient required FiO2 0.8-1.0 for cares

Frequent desaturations to SpO2 50-65% requiring FiO2 1.0 and sometimes manual ventilation to recover*

31 weeks + 1 day – HFJV + sigh breaths and FiO2 0.84-1.0. Significant atelectasis on CXR - switched to HFOV with MAP 20

31-32 weeks - HFOV, FiO2 0.65-0.9* Patient required FiO2 0.9-1.0 with handling and continued to have desaturations to SpO2 55-65%


32 weeks + 4 days PMA – initiated the established BPD ventilation strategy


Date	22-Apr	23-Apr	27-Apr	28-Apr		
Time	13:24	21:55	9:45	4:23	16:48	20:53
HR	156	144	150	136	146	143
SpO2	97	95	98	94	92	96
FiO2	0.72	0.62	0.5	0.53	0.46	0.49
TcPCO2	72.5	90	89.6	77	83.9	79
EtCO2						
Mode	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG
RR (set)	20				20	20
RR (total)	30				29	33
PIP (meas)	25	30	31	35	38	29
PEEP (set)	10					10
Ti	0.6					0.6
Slope	0.2					0.2
Psupport	10					10
MAP	13					14
VG (set)	8.5	9	9.5		12	10.2
VG (ml/kg)	8.5	9	8.6	9.45	10	8.5
MV	0.22	0.26				0.28
Trigger	0.4					0.4
Pmax	32					36
		High	High		High	
Rational		TcPCO2	TcPCO2	CBG	TcPCO2	CBG
Date	21-Apr	23-Apr	25-Apr	28-Apr		28-Apr
Time	3:46	4:15	6:04	4:01		19:48
Source	CBG	CBG	CBG	CBG		CBG
pH	7.34	7.38	7.34	7.31		7.42
PCO2	58	56	68	70		59
PO2	33	45	62	59		37
HCO3	31	34	37	35		38
BE	4	7	9	7		12
TcPCO2	73	75	79	81		79
Meds	morphine 1	4	morphine		0, spironolad	ctone 1 mg,
	mcg/kg/hr,		decreased	clonadine 2	mcg/kg	
	spironolact	٥,	to 12			
	clonadine 1	. mcg/kg				

Date	22-Apr	23-Apr	27-Apr	28-Apr			
Time	13:24	21:55	9:45	4:23	16:48	20:53	
HR	156	144	150	136	146	143	
SpO2	97	95	98	94	92	96	
FiO2	0.72	0.62	0.5	0.53	0.46	0.49	
TcPCO2	72.5	90	89.6	77	83.9	79	
EtCO2							
Mode	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	
RR (set)	20				20	20	
RR (total)	30				29	33	
PIP (meas)	25	30	31	35	38	29	
PEEP (set)	10					10	
Ti	0.6					0.6	
Slope	0.2					0.2	
Psupport	10					10	
MAP	13					14	
VG (set)	8.5	9	9.5	10.4	12	10.2	
VG (ml/kg)	8.5	9	8.6	9.45	10	8.5	
MV	0.22	0.26				0.28	
Trigger	0.4					0.4	
Pmax	32					36	
		High	High		High		
Rational		TcPCO2	TcPCO2	CBG	TcPCO2	CBG	
Date	21-Apr	23-Apr	25-Apr	28-Apr		28-Apr	
Time	3:46	4:15	6:04	4:01		19:48	
Source	CBG	CBG	CBG	CBG		CBG	
pH	7.34	7.38	7.34	7.31		7.42	
PCO2	58	56	68	70		59	
PO2	33	45	62	59		37	
HCO3	31	34	37	35		38	
BE	4	7	9	7		12	
TcPCO2	73	75	79	81		79	
Meds	morphine 1	4	morphine	morphine 1	0, spironolad	ctone 1 mg,	
	mcg/kg/hr,		decreased	clonadine 2	mcg/kg		
	spironolact		to 12				
	clonadine 1	mcg/kg					

Date	22-Apr	23-Apr	27-Apr	⊗28-Apr			29-Apr	30-Apr	01-May	02-May	
Time	13:24	21:55	9:45	4:23	16:48	20:53	11:36	4:37	11:49	16:27	
HR	156	144	150	136	146	143	149	145	157	152	
SpO2	97	95	98	94	92	96	97	90	94	95	
FiO2	0.72	0.62	0.5	0.53	0.46	0.49	0.5	0.45	0.45	0.5	
TcPCO2	72.5	90	89.6	77	83.9	79				70	
EtCO2							53	48	55		
Mode	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	
RR (set)	20				20	20	15	15	15	15	
RR (total)	30				29	33			38	37	
PIP (meas)	25	30	31	35	38	29		33	28	37	
PEEP (set)	10					10			9	9	
Ti	0.6					0.6			0.6	0.8	
Slope	0.2					0.2			0.2	0.25	
Psupport	10					10			10	10	
MAP	13					14			13		
VG (set)	8.5	9	9.5	10.4	12	10.2		10.8	10.8	11.7	
VG (ml/kg)	8.5	9	8.6	9.45	10	8.5		9	9	9	
MV	0.22	0.26				0.28			0.4		
Trigger	0.4					0.4			0.4		
Pmax	32					36			42		
		High	High		High					ETT leak,	
Rational		TcPCO2	TcPCO2	CBG	TcPCO2	CBG	wean	CBG	wean	CBG	
Date	21-Apr	23-Apr	25-Apr	28-Apr		28-Apr		30-Apr		02-May	
Time	3:46	4:15	6:04	4:01		19:48		4:10		6:24	
Source	CBG	CBG	CBG	CBG		CBG		CBG		CBG	
pH	7.34	7.38	7.34	7.31		7.42		7.29		7.37	
PCO2	58	56	68	70		59		72		73	
PO2	33	45	62	59		37		41		47	
HCO3	31	34	37	35		38		34		42	
BE	4	7	9	7		12		6		14	
TcPCO2	73	75	79	81		79		Et 50		Et 58	
Meds	morphine 1	4	morphine	morphine 1	0, spironolad	ctone 1 mg,	morphine 8	, spironolact	one 1 mg, cl	onadine 2	
	mcg/kg/hr,		decreased	clonadine 2	mcg/kg		mcg/kg				
	spironolact	_	to 12								
	clonadine 1	mcg/kg									

Date	22-Apr	23-Apr	27-Apr	28-Apr			29-Apr	30-Apr	01-May	02-May	04-May		
Time	13:24	21:55	9:45	4:23	16:48	20:53	11:36	4:37	11:49	16:27	14:50		
HR	156	144	150	136	146	143	149	145	157	152	147		
SpO2	97	95	98	94	92	96	97	90	94	95	92		
FiO2	0.72	0.62	0.5	0.53	0.46	0.49	0.5	0.45	0.45	0.5	0.52		
TcPCO2	72.5	90	89.6	77	83.9	79				70	85.6		
EtCO2							53	48	55			1	
Mode	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG		
RR (set)	20				20	20	15	15	15	15	15	100000	
RR (total)	30				29	33			38	37	38		
PIP (meas)	25	30	31	35	38	29		33	28	37	28		
PEEP (set)	10					10			9	9	9	200000	
Ti	0.6					0.6			0.6	8.0	0.8		
Slope	0.2					0.2			0.2	0.25	0.25		
Psupport	10					10			10	10	10		
MAP	13					14			13		16		
VG (set)	8.5	9	9.5	10.4	12	10.2		10.8	10.8	11.7	12.4	97 WH	
VG (ml/kg)	8.5	9	8.6	9.45	10	8.5		9	9	9	9.5	(A)	
MV	0.22	0.26				0.28			0.4		0.35		
Trigger	0.4					0.4			0.4		0.4		
Pmax	32					36			42		35		
		High	High		High					ETT leak,			
Rational		TcPCO2	TcPCO2	CBG	TcPCO2	CBG	wean	CBG	wean	CBG			
Date	21-Apr	23-Apr	25-Apr	28-Apr		28-Apr		30-Apr		02-May	03-May		
Time	3:46	4:15	6:04	4:01		19:48		4:10		6:24	23:36		
Source	CBG	CBG	CBG	CBG		CBG		CBG		CBG	CBG		
pH	7.34	7.38	7.34	7.31		7.42		7.29		7.37	7.34		
PCO2	58	56	68	70		59		72		73	73		
PO2	33	45	62	59		37		41		47	58		
HCO3	31	34	37	35		38		34		42	39		
BE	4	7	9	7		12		6		14	10		
TcPCO2	73	75	79	81		79		Et 50		Et 58	79		
Meds	morphine 1 mcg/kg/hr, spironolact	one 1 mg,		morphine 1 clonadine 2	0, spironolad 2 mcg/kg	ctone 1 mg,	morphine 8, spironolactone 1 mg, clonadine 2 mcg/kg				morphine 6, spironolactone 1.5 mg, clonadine 3 mcg/kg,		
	clonadine 1 mcg/kg								budesonide				

Date	22-Apr	23-Apr	27-Apr	28-Apr			29-Apr	30-Apr	01-May	02-May	04-May	06-May	
Time	13:24	21:55	9:45	4:23	16:48	20:53	11:36	4:37	11:49	16:27	14:50	14:30	
HR	156	144	150	136	146	143	149	145	157	152	147	159	
SpO2	97	95	98	94	92	96	97	90	94	95	92	95	
FiO2	0.72	0.62	0.5	0.53	0.46	0.49	0.5	0.45	0.45	0.5	0.52	0.55	
TcPCO2	72.5	90	89.6	77	83.9	79				70	85.6	75.2	
EtCO2							53	48	55				
Mode	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	NIV CMV	
RR (set)	20				20	20	15	15	15	15	15	40	
RR (total)	30				29	33			38	37	38		
PIP (meas)	25	30	31	35	38	29		33	28	37	28	24	
PEEP (set)						10			9	9	9	12	
Ti	0.6					0.6			0.6	8.0	0.8	8.0	
Slope	0.2					0.2			0.2	0.25	0.25	0.2	
Psupport	10					10			10	10	10		
MAP	13					14			13		16	15	
VG (set)	8.5	9	9.5	10.4	12	10.2		10.8	10.8	11.7	12.4		
VG (ml/kg)		9	8.6	9.45	10	8.5		9	9	9	9.5		
MV	0.22	0.26				0.28			0.4		0.35		
Trigger	0.4					0.4			0.4		0.4		
Pmax	32					36			42		35		
		High	High		High					ETT leak,			
Rational		TcPCO2	TcPCO2	CBG	TcPCO2	CBG	wean	CBG	wean	CBG		Extubated	
Date	21-Apr	23-Apr	25-Apr	28-Apr		28-Apr		30-Apr		02-May	03-May	06-May	
Time	3:46	4:15	6:04	4:01		19:48		4:10		6:24	23:36	3:59	
Source	CBG	CBG	CBG	CBG		CBG		CBG		CBG	CBG	CBG	
pH	7.34	7.38	7.34	7.31		7.42		7.29		7.37	7.34	7.34	
PCO2	58	56	68	70		59		72		73	73	74	
PO2	33	45	62	59		37		41		47	58	37	
HCO3	31	34	37	35		38		34		42	39	40	
BE	4	7	9	7		12		6		14	10	11	
TcPCO2	73	75	79	81		79		Et 50		Et 58	79	79	
Meds	morphine 1	4	morphine	•	0, spironola	ctone 1 mg,	morphine 8	, spironolact	one 1 mg, cl	onadine 2	morphine 6		
	mcg/kg/hr,			clonadine 2	mcg/kg		mcg/kg				spironolact	0.	
	spironolact	•	to 12								clonadine 3		
	clonadine 1	. mcg/kg					budesonide						

Date	22-Apr	23-Apr	27-Apr	28-Apr			29-Apr	30-Apr	01-May	02-May	04-May	06-May	12-May	13-May	15-May	17-May	19-May
Time	13:24	21:55	9:45	4:23	16:48	20:53	11:36	4:37	11:49	16:27	14:50	14:30	8:33	12:47	8:39	12:01	9:14
HR	156	144	150	136	146	143	149	145	157	152	147	159	149	131	140	153	146
SpO2	97	95	98	94	92	96	97	90	94	95	92	95	96	96	93	93	94
FiO2	0.72	0.62	0.5	0.53	0.46	0.49	0.5	0.45	0.45	0.5	0.52	0.55	0.35	0.3	0.26	0.28	0.24
TcPCO2	72.5	90	89.6	77	83.9	79				70	85.6	75.2					
EtCO2							53	48	55								
Mode	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG	SIMV+VG		_	NIV CMV	NIV CMV	NIV CMV	NCPAP
RR (set)	20				20	20	15	15	15	15		40	40				
RR (total)	30				29	33			38	37	38						
PIP (meas)	25	30	31	35	38	29		33	28	37	28	24		21	20	19	
PEEP (set)	10					10			9	9	_	12		11	10	9	12
Ti	0.6					0.6			0.6	0.8	8.0	0.8					
Slope	0.2					0.2			0.2	0.25	0.25	0.2	0.1				
Psupport	10					10			10	10							
MAP	13					14			13		16	15	15	14	13	11	
VG (set)	8.5	9		10.4	12	10.2		10.8	10.8	11.7	12.4						
VG (ml/kg)	8.5	9	8.6	9.45	10	8.5		9	9	9							
MV	0.22	0.26				0.28			0.4		0.35						
Trigger	0.4					0.4			0.4		0.4						
Pmax	32					36			42		35						
		High	High		High					ETT leak,							
Rational		TcPCO2	TcPCO2	CBG	TcPCO2	CBG	wean	CBG	wean	CBG		Extubated					
Date	21-Apr	23-Apr	25-Apr	28-Apr		28-Apr		30-Apr		02-May	03-May	06-May	12-May			16-May	19-May
Time	3:46	4:15	6:04	4:01		19:48		4:10		6:24		3:59				8:01	8:07
		CBG	CBG	CBG		CBG		CBG		CBG		CBG	CBG				CBG
pH	7.34	7.38		7.31		7.42		7.29		7.37	7.34	7.34				7.34	7.35
PCO2	58	56		70		59		72		73		74				62	61
PO2	33	45		59		37		41		47	58	37				47	41
HCO3	31	34	37	35		38		34		42	39	40				33	34
BE	4	7	9	7		12		6		14	_	11				6	6
TcPCO2	73	75		81		79		Et 50		Et 58	79	79					
Meds	morphine 14	4	morphine	morphine 1	0, spironolad	ctone 1 mg,	morphine 8	, spironolact	one 1 mg, cl	onadine 2	morphine 6	•	morphine 3	mcg/kg,	spironolact	one 2, clona	dine 4
	mcg/kg/hr,		decreased	clonadine 2	2 mcg/kg		mcg/kg				spironolactone 1.5 mg,						
	spironolact	-	to 12								clonadine 3 mcg/kg, clonadine 3.5,						
	clonadine 1	mcg/kg									budesonide		budesonide				

CXR after extubation to NIV CMV

Summary

- Patient born at 25 weeks GA, birth weight 670 g
- Volvulus and bowel resection at 28 weeks PMA
- Patient on high FiO2 requirements on HFJV and HFOV, unable to wean settings
- No improvement with DART
- Not tolerating cares, needing FiO2 0.8-1.0 for handling
- Frequent significant desaturations requiring FiO2 1.0 and sometimes manual ventilation to recover
- Patient switched to established BPD strategy at 32 weeks + 4 days
- Sedation weaned progressively after switch to SIMV+VG
- Extubated 14 days later to NIV CMV
- 13 days after extubation FiO2 < 0.3 and switched to NCPAP

Take Home Points

- Use established BPD strategy only if patient has heterogeneous lung disease of prematurity, is > 28 days of age, and is no longer tolerating optimized high-frequency ventilation
 - → high FiO2 > 0.6, significant work of breathing, not tolerating handling, significant desaturation +/bradycardia episodes, unable to wean HFV settings
- Titrate set RR and VG to maintain adequate minute ventilation, meet PCO2 targets, and keep total RR ≤ 35 bpm to maximize time for exhalation
- Set Ti according to flow-time waveform and set slope/rise time to 1/3rd of the Ti to optimize patient comfort and reduce asynchrony with the ventilator
- Titrate Psupport according to work of breathing and increase to decrease total RR
- Adjust PEEP based on FiO2 requirements and flow-volume loops (gas trapping and expiratory flow obstruction)
- Take care not to confuse gas trapping on CXR with hyperinflation from high PEEP; weaning PEEP may cause airway
 collapse and worsen gas trapping
- Look for patient efforts not rewarded with a breath consider decreasing the flow trigger, or increasing the PEEP
 if significant gas trapping is suspected

